Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model
نویسندگان
چکیده
[1] The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error. Citation: Durand, M., K. M. Andreadis, D. E. Alsdorf, D. P. Lettenmaier, D. Moller, and M. Wilson (2008), Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model, Geophys. Res. Lett., 35, L20401, doi:10.1029/2008GL034150.
منابع مشابه
Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model
[1] Surface water elevation profiles for a reach of the Ohio River were produced by the Jet Propulsion Laboratory Instrument Simulator to represent satellite measurements representative of those that would be observed by awide swath altimeter being considered jointly by U.S. and European space agencies. The Ensemble Kalman filter with a river hydrodynamics model as its dynamical core was used t...
متن کاملOn the Retrieval of Sea Ice Thickness and Snow Depth using Concurrent Laser Altimetry and L-Band Remote Sensing Data
The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, are key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave sensing, although the sea ...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملHydrodynamic Modelling of Coral Reefs:Ningaloo Reef-Western Australia
As with all coral reef systems, the ecology of Ningaloo Reef is closely linked to water circulation which transport and disperse key material such as nutrients and larvae. Circulation on coral reefs may be driven by a number of forcing mechanisms including waves, tides, wind, and buoyancy effects. Surface waves interacting with reefs have long been known to dominate the currents on many coral r...
متن کاملمدل سازی رسوب گذاری در خور بوشهر با استفاده از نرم افزار21 MIKE
Estimation of siltation depth in harbors and estuaries plays an important role in design of marine structures. In this paper, siltation process at Bushehr estuary as one of the most important water bodies in south of Iran is modeled by so-called MIKE 21 mathematical model. To achieve this, at first a large scale hydrodynamic model calibrated by IRANSIAM registered water levels is developed whil...
متن کامل